\(\int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [334]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 361 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {\cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{\sqrt {a+b} d}-\frac {\cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{\sqrt {a+b} d}+\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-
b*(1+sec(d*x+c))/(a-b))^(1/2)/d/(a+b)^(1/2)-cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-
b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d/(a+b)^(1/2)+2*cot(d*x+c)*EllipticP
i((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(
-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d-cot(d*x+c)/d/(a+b*sec(d*x+c))^(1/2)+b^2*tan(d*x+c)/(a^2-b^2)/d/(a+b*sec(d*x
+c))^(1/2)

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3981, 3869, 3960, 3918, 21, 3914, 3917, 4089} \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {b^2 \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d \sqrt {a+b}}+\frac {\cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d \sqrt {a+b}}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[Cot[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*
x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(Sqrt[a + b]*d) - (Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a
 + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c +
d*x]))/(a - b))])/(Sqrt[a + b]*d) + (2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c
+ d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a -
 b))])/(a*d) - Cot[c + d*x]/(d*Sqrt[a + b*Sec[c + d*x]]) + (b^2*Tan[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c
+ d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3914

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[a - b, Int[Csc[e + f
*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[b, Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]),
 x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3918

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*Cot[e + f*x]*(
(a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a
+ b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 -
b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 3960

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)/cos[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[Tan[e + f*x]*((a
+ b*Csc[e + f*x])^m/f), x] + Dist[b*m, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e
, f, m}, x]

Rule 3981

Int[cot[(c_.) + (d_.)*(x_)]^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandIntegrand
[(a + b*Csc[c + d*x])^n, (-1 + Sec[c + d*x]^2)^(-m/2), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0
] && ILtQ[m/2, 0] && IntegerQ[n - 1/2] && EqQ[m, -2]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (-\frac {1}{\sqrt {a+b \sec (c+d x)}}+\frac {\csc ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}\right ) \, dx \\ & = -\int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+\int \frac {\csc ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}-\frac {1}{2} b \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx \\ & = \frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {b \int \frac {\sec (c+d x) \left (-\frac {a}{2}-\frac {1}{2} b \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{a^2-b^2} \\ & = \frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {b \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )} \\ & = \frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {b \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 (a+b)}-\frac {b^2 \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 \left (a^2-b^2\right )} \\ & = \frac {\cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{\sqrt {a+b} d}-\frac {\cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{\sqrt {a+b} d}+\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 13.15 (sec) , antiderivative size = 366, normalized size of antiderivative = 1.01 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {\left (-8 b (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \cot \left (\frac {1}{2} (c+d x)\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-8 \left (2 a^2-a b-3 b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \cot \left (\frac {1}{2} (c+d x)\right ) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+4 (a-b) \csc ^2(c+d x) \left (2 \cos (c+d x) (b+a \cos (c+d x))+32 (a+b) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \tan (c+d x)}{8 \left (-a^2+b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[In]

Integrate[Cot[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

((-8*b*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*C
ot[(c + d*x)/2]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 8*(2*a^2 - a*b - 3*b^2)*Sqrt[Cos[c + d*
x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Cot[(c + d*x)/2]*EllipticF[ArcS
in[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 4*(a - b)*Csc[c + d*x]^2*(2*Cos[c + d*x]*(b + a*Cos[c + d*x]) + 32*(a
 + b)*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c +
 d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sin[(c + d*x)/2]))*Tan[c + d*x])/(8*(-a^2 +
 b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1373\) vs. \(2(330)=660\).

Time = 7.10 (sec) , antiderivative size = 1374, normalized size of antiderivative = 3.81

method result size
default \(\text {Expression too large to display}\) \(1374\)

[In]

int(cot(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d/(a-b)/(a+b)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*cs
c(d*x+c)^2-1))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-4*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-co
s(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a
-b)/(a+b))^(1/2))*a^2*(-cot(d*x+c)+csc(d*x+c))+2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^
2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))
^(1/2))*a*b*(-cot(d*x+c)+csc(d*x+c))+6*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+
c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^
2*(-cot(d*x+c)+csc(d*x+c))-2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-
cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b*(-cot(d*
x+c)+csc(d*x+c))-2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c)
)^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^2*(-cot(d*x+c)+csc(d
*x+c))+8*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*
x+c)^2-a-b)/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*(-cot(d*x+c)+csc(d*x+c))
-8*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2
-a-b)/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^2*(-cot(d*x+c)+csc(d*x+c))-a^2*(
1-cos(d*x+c))^4*csc(d*x+c)^4+2*a*(1-cos(d*x+c))^4*b*csc(d*x+c)^4-(1-cos(d*x+c))^4*b^2*csc(d*x+c)^4+2*a^2*(1-co
s(d*x+c))^2*csc(d*x+c)^2-2*a*(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a^2+b^2)/((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(
d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)/(1-cos(d*x+c))*sin(d*x+c)/((a*(1-cos(d*x
+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)

Fricas [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\cot \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cot(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(cot(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\cot ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate(cot(d*x+c)**2/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(cot(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\cot \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cot(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\cot \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cot(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cot(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^2}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(cot(c + d*x)^2/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cot(c + d*x)^2/(a + b/cos(c + d*x))^(1/2), x)